
In Proc. Sixth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
July 2002.

1

An Infrastructure for Secure Interoperability of Agents
(Position Statement)

Ramesh Bharadwaj, Judith Froscher, Amit Khashnobish, James Tracy
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington DC 20375

{ramesh, froscher, amith, tracy}@itd.nrl.navy.mil

Introduction
Building distributed applications is
difficult. Therefore, it is hardly
surprising that in spite of all the
hoopla surrounding the Internet and
distributed computing, truly
distributed applications are few and
far between. The problem seems to be
with the tools available to
developers of distributed
applications. For example, the most
widely used mechanism for distributed
computation is the remote procedure
call (RPC), the first implementation
of which dates back to the early
’80s. Typically, a remote procedure
call is executed on a server on
behalf of a client (the so-called
“client-server” model). It is hardly
surprising therefore that most
distributed applications today are
exclusively based on the client-
server architecture. A lot can be
(and has been) accomplished with this
architecture, as exemplified by the
World Wide Web and HTTP, a protocol
that implements RPC. However, the
client-server model has a number of
limitations. There are problems of
fault tolerance, load balancing,
survivability, dynamic
reconfiguration, rollover recovery,
and distribution of control.
Attempts in the past to break through
this bottleneck have had only limited
success.

More recently, there has been an
emerging body of work in the area
broadly known as Peer-to-Peer (P2P)
distributed application frameworks.
Many major organizations, both in
industry and academia, have been
jumping on the P2P bandwagon.
However, as with other emerging

technologies, these companies and
organizations are paying scant
attention to security (an exception
seems to be the JXTA consortium being
put together by Sun Microsystems).
In our opinion, rather than trying to
make these systems secure as an
afterthought, it would be much better
if organizations think of security
from the ground-up.

Why Software Agents?
It is widely acknowledged that
intelligent software agents are
central to the development of the
capabilities required to write
robust, re-configurable, and
survivable distributed applications.
This is because agents are an
efficient, effective, and survivable
means of information distribution and
access. Agents are efficient because
only relevant information needs to be
passed along. Agents are effective
because they allow local control over
updates and the dissemination of
data. Agents are more survivable
because their control is distributed.
This new technology, which includes
both autonomous and mobile agents,
addresses many of the challenges
posed by distribution of applications
and is capable of achieving the
desired quality of service, most
notably over unreliable, low-
bandwidth communication links.
However, agent technology carries
with it associated security
vulnerabilities. Distributed
computing in general carries with it
risks such as denial of service,
Trojan horses, information leaks, and
malicious code. Agent technology, by
introducing autonomy and code
mobility, may exacerbate some of
these problems. In particular, a

In Proc. Sixth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
July 2002.

2

malicious agent could do serious
damage to an unprotected host, and
malicious hosts could damage agents
or corrupt their data. Such threats
become very real in a distributed
computing environment, in which a
malicious intruder may be actively
trying to disrupt communications.

The goal of the Secure Agents
Middleware (SAM) project is to
provide the required degree of trust
in addition to meeting a set of
achievable security requirements.
Such an infrastructure is central to
the successful deployment and
transfer of agent technology to
industry because security is a
necessary prerequisite for
distributed computing. To make agent-
based systems economically viable, it
is imperative that their development,
upgrade, integration, testing,
certification, and delivery be rapid
and cost-effective. However, immense
and profound challenges of software
trustworthiness remain. Commercially
available methods and tools for
software development are not
sufficient to meet the challenges
posed by the distribution of
processing functions, real-time and
non-real-time integration, multi-
level security, and issues
characteristic of COTS products, such
as malicious code, viruses, worms,
and Trojan horses.

Technical Approach
The Secure Agents Middleware (SAM)
and its associated Agent Creation
Environment (ACE) are explicitly
designed to solve the security
problems described above and other
related problems of agent creation
and deployment. Although security is
our primary concern, we also address
problems of efficiency, robustness,
and usability. To support usability,
ACE provides agent templates and
other visual aids to ease the agent
creation process.

The following are highlights of the
functionality provided by SAM/ACE:

• SAM provides role-based access
control and management in
addition to trust management.

• SAM includes functions for
intrusion detection and
tolerance.

• SAM is designed for
survivability and supports
Multi-Level Secure (MLS) access
and authentication.

• ACE uses SADL (Secure Agent
Description Language), a
flexible and powerful notation
in which to express the rules
(i.e., the logic) of agents.

• The notation SADL and its
associated user-friendly agent
creation templates include a
notation for specifying
security and safety properties.

 We plan to develop an open source
compliance checker (CC) which will
prove compliance of agents with
policies and goals. By ensuring that
security properties are satisfied and
that an agent behaves as specified,
we address the issue of agent
integrity. The architecture of SAM
improves efficiency because the flow
of information between hosts is
optimized. This is because our
representation of information is
finer grained than current
architectures based on distributed
objects, where information
granularity is at the object level.
We gain efficiency and better utilize
bandwidth by a controlled exchange of
information between networked hosts.
Also, because our agents are
composable and modular, ACE can
evaluate emergent behavior of agent
communities, which is generally not
possible in the absence of a
component aggregation framework.
This capability enables early
detection and prevention of an
organized, cooperative attack on a
distributed computing environment in
which each agent performs some action
that falls beneath the threshold of
most analysis techniques, but effects
serious damage as a distributed
attack. Currently these types of
vulnerabilities have defied analysis.

In Proc. Sixth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
July 2002.

3

Host

Host

Host

Agent

Interpreter

Agent

Agent

Interpreter

Interpreter

Agents

Agents

Agents

Encrypt

Encrypt

E
n
c
r
y
p
t

E
n
c
r
y
p
t

E
n
c
r
y
p
t

Figure 1

Figure 1 shows the architecture of
SAM. Agents are distributed over
one or more Hosts, each of which runs
one or more Agent Interpreters (AIs),
that execute agents in compliance
with a set of Security Policies.
Agents are created using special-
purpose templates in ACE (not shown),
and are translated into SADL. Agents
may be created on any host. Agent
Interpreters communicate among
themselves using a lightweight
protocol such as XML/SOAP, over
secure channels, with strong
encryption using a public key
infrastructure (PKI). SOAP is
particularly appealing because it can
support both HTTP as well as SMTP
protocols for transporting XML data
and metadata. Also, because SOAP is a

lightweight protocol, its overhead is
not as high as the overhead of other
inter-object protocols such as CORBA
IIOP. Hosts will initially run a COTS
operating system such as Solaris or
Windows XP, but will eventually
transition to a trusted operating
system such as secure Linux (a
product of NSA) or secure Solaris, or
alternately use NAI’s DTE (Domain
Type Enforcement). We will also
investigate the use of other secure
COTS components such as the secure
Java Virtual Machine and other secure
interpreters, as well as secure
protocols for using the public key
infrastructure to distribute keys
among interpreters and for
authentication of agents.

In Proc. Sixth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
July 2002.

4

Requirements for Secure Mobile
Agents
Security is a fundamental concern of
SAM. By building security from the
ground-up into SAM, we gain
efficiency by identifying and dealing
with potential bottlenecks early,
i.e., at the design stage. SAM
provides an efficient architecture
and ensures security by eliminating
unnecessary and/or insecure
communication among agents and
interpreters. Our classification of
requirements for secure mobile agents
is from “Security for Mobile Agents:
Issues and Requirements," by William
N. Farmer, Joshua D. Guttman, and
Vipin Swarup, of The MITRE
Corporation, Bedford, MA.
The NRL SAM project addresses the
following security requirements:

• The author and sender of an
agent must be authenticated.
In SAM, code distribution is distinct from
agent mobility. Consequently, the issue of
code tampering by possibly compromised
hosts is addressed. This is in contrast to
other mobile-agent based systems, such
as Dartmouth’s D’Agents, which do not
make this distinction. In D’Agents, both
the code as well as the data move
together between hosts. Moreover, this
movement is over an unsecure channel
and without certificates or signatures.
Therefore, a compromised host has the
ability to tamper with the agent without
being detected.

• The correctness of an agent's
code must be checked.

• Interpreters must ensure that
agent privacy is maintained
during transmission.

• Authentication and
authorization: Interpreters
must protect themselves against
malicious agents by first
authenticating the agent and
checking that its proposed
activities are authorized.

• Agents must be created in a
language that supports the
development of safe programs.
We use SADL, a language that can
ensure agent safety. All analyzed and
verified SADL programs are guaranteed
to have no unbounded loops, violations of
array index bounds, etc. This will make
attacks such as Denial of Service (DOS)
and malicious code propagation much
harder in the SAM environment.

• A sender must have control over
an agent's flexibility; e.g.,
restrict or increase an agent's
authorization in particular
situations.

• An interpreter must ensure that
an agent is in a safe state.
Because a migrating agent can become
malicious, each agent must be equipped
with an appropriate state appraisal
function to be used each time an
interpreter starts an agent. This will
ensure that an agent will perform as
required and has not been tampered with
in a malicious way. Agent creators will be
provided with appropriate static analysis
tools that will ensure that the state
appraisal function satisfies key safety and
security properties.

• A sender must have control over
which interpreters have the
authority to execute an agent.

Currently, protecting agents from
malicious hosts is an area of ongoing
research. Therefore, in our initial
implementation, we shall assume a
degree of trust among the hosts.
This is reasonable in a large
organization such as the Department
of Defense where it may be assumed
that other policing methods and
techniques for intrusion detection
and tolerance will identify and sift
out casual intruders and
eavesdroppers. We plan to address
the more general problem of agent
protection in our future research.

In Proc. Sixth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
July 2002.

5

SAM Architecture

Figure 2 shows the architecture of
SAM. One of the unique features of
this architecture is that we harness
the power and flexibility afforded by
agent technology to our advantage,
thereby ameliorating the associated
security and safety vulnerabilities.
We accomplish this by introducing a
special class of agents called
security agents to police other
classes of agents (called secure
agents) such as application agents
developed to support a distributed
SIGINT system. Security agents
protect a system against Information
Operations (IO) attacks by
implementing key security features

such as encryption, authorization,
policy enforcement, virus checking,
survivability, and intrusion
detection. Since security agents have
more privileges than other agents, we
need higher assurance during
development and deployment to ensure
the safe and secure behavior of
security agents. As outlined
previously, we achieve this with a
three-pronged approach: (1) We
specify agents in SADL – a language
for high assurance. (2) We use the
compliance checker to establish
formally the compliance of agent
behavior with the local security
policies. (3) We implement a security
architecture for monitoring and
coordinating agents’ activities.

Figure 2

$$SSSSOOLLFFDDWWLLRRQQ

••CCOORRBBAA//II IIOOPP
•• XXMMLL//SSOOAAPP
•• TTCCPP//IIPP

66885599,,99$$%%,,//,,77<<

$$**((1177��,,1177((553355((77((55��

66((&&8855,,77<<��$$**((117766�� 66((5599,,&&((��$$**((117766��

66((&&8855,,77<<����
00$$11$$**((00((1177�

TTrraannssppoorrtt BBllddgg.. BBlloocckkss SSeeccuurriittyy BBllddgg.. BBlloocckkss
•• ccrryyppttooggrraapphhiicc pprroodduuccttss
•• kkeeyy mmaannaaggeemmeenntt
•• aauutthheennttiiccaattiioonn
•• vviirruuss cchheecckkeerrss
•• ddoowwnnggrraaddeerrss && uuppggrraaddeerrss

In Proc. Sixth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
July 2002.

6

In the initial phase of this project
we shall assume the following:

• All agent interpreters will run
agents correctly

• Hosts will run all agents to
completion

• Hosts will transfer agents as
requested

• An agent’s code and data cannot
be kept private and will be
readable by all agent
interpreters

• Agents do not carry secret keys
• Agent-to-agent communication

cannot be kept private from
agent interpreters.

We will address these important
technical issues in later phases of
the project.

Project Goals
In this project, we address the
following technical issues:

• Ensuring consistency of agent
behavior

• Design and implementation of SADL:
- Making SADL specifications
 composable, consistent, safe,
 and secure.
- Proving application properties
 of SADL specifications.

• Responsibilities of Security
Agents:
- Authorization agents
- Crypto assist agents
- Policy enforcement agents
- Secure agents monitoring
- Raising exceptions
- Establishing trust in these
 privileged agents

• Application-specific security
agents:
- Intrusion detection
- Application monitoring
- Survivability (adaptability)
- Infrastructure monitoring

• Development of a “common I/O
Picture” for secure agents:
- Making sure security agents
 enforce a consistent security
 policy

• Secure, safe mobility of agent
code.

Operational Payoff
The goal of the NRL secure agents
project is to develop enabling
technology that will provide the
necessary security infrastructure to
deploy and protect time and mission-
critical applications on a
distributed computing platform. Our
intention is to create a robust and
survivable information grid that will
be capable of resisting threats and
surviving attacks. One of the
criteria on which this technology
will be judged is that critical
information is conveyed to principals
in a manner that is secure, safe,
timely, and reliable. No malicious
agencies or other threats should be
able to compromise the integrity or
timeliness of delivery of this
information.

Acknowledgements
This project was funded by the Office
of Naval Research. The authors wish
to thank Connie Heitmeyer, Cathy
Meadows,and John McLean for many
useful discussions pertaining to the
NRL Secure Agents project, and Eric
Tressler for his very useful comments
on previous drafts of this
manuscript. The authors also thank
Connie Heitmeyer for using her
PowerPoint skills in composing the
architectural drawing of Figure 2.

